Bringing AI to the production line AWS helps eCloudEdge make NeoEdge a digital bridge for smart manufacturing



軌道與電力設施監控難題 軌道設施管理需要更安全的方案 NeoEdge 賦能軌道設…

車站維運管理的挑戰 打造即時、節能、安全的智慧車站管理系統 一站整合的 AIoT…

列車營運管理升級挑戰:你是否也遇到這些瓶頸? 解決關鍵痛點的 5 大需求 用 N…




在製造、輸油、能源與交通等場域中,設備複雜、場域分散、管理不易。這些特性讓「維運管理」成為企業穩定營運的關鍵任務之一。因維運任務日益複雜,越來越多企業開始評估導入「遠端維運管理平台」以確保營運穩定。

OT data governance refers to the systematic management, standardization, and quality control of data generated from industrial operations, ensuring it can effectively support enterprise decision-making and AI applications. It covers the end-to-end process—from data acquisition, format transformation, quality validation, and access control to storage and downstream usage. Unlike IT data governance, OT data governance must account for diverse equipment communication protocols, complex data types, real-time operational requirements, data security, and the constraints of edge computing environments.
